
Design and Implementation of
Andromeda

Andrej Bauer Gaëtan Gilbert
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Type theory with equality reflection

▶ dependent product

▶ equality type

eq-reflection

Γ ⊢ p : EqT (e1, e2)

Γ ⊢ e1 ≡ e2 : T
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Expressivity

This TT can hypothesise judgemental equalities.

In Andromeda, this is used for

▶ definitions

▶ rewriting rules

▶ extensionality principles
▶ new types with judgemental computation
rules:

▶ declare constants for types and constructors
▶ declare constants of equality types
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Nucleus

▶ simple: 1800 lines of pure OCaml

▶ implements exactly the rules of our TT

▶ computes judgements Γ ⊢ e : T

5 / 1



Andromeda Meta Language (AML)

▶ ML-style language
▶ special data type judgement :

▶ smart constructors via Nucleus
▶ pattern matching on syntax

▶ algebraic effects & handlers à la Eff
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Questions asked by the Evaluator

▶ equality:
Γ ⊢ (λx:T . x) e ≡ e : T

▶ type shape analysis:
T ↪→

∏
(x:A)B

▶ coercions:
“a has type Field but expected a Ring”
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Soundness

The values of type judgement are the derivable
judgements in type theory with equality reflection.

We implemented some safe algorithms:

▶ equal.m31 (600 lines)

▶ hints.m31 (400 lines)
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Related work

▶ rewriting in TT: ‘sprinkles’, Dedukti,
CoqMT, ...

▶ “extensional” type theory: Nuprl

▶ ML based ITPs: LCF / HOL (light) family
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Plans

▶ improve efficiency

▶ replace Type : Type with universes

▶ axiomatise Homotopy Type System

▶ users!
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