
Design and Implementation of
Andromeda

Andrej Bauer Gaëtan Gilbert
Philipp Haselwarter Matija Pretnar

Christopher A. Stone

TYPES 2016

1 / 1



Type theory with equality reflection

▶ dependent product

▶ equality type

eq-reflection

Γ ⊢ p : EqT (e1, e2)

Γ ⊢ e1 ≡ e2 : T

2 / 1



Expressivity

This TT can hypothesise judgemental equalities.

In Andromeda, this is used for

▶ definitions

▶ rewriting rules

▶ extensionality principles
▶ new types with judgemental computation
rules:

▶ declare constants for types and constructors
▶ declare constants of equality types

3 / 1



Architecture
A
M
L

O
C
am

l

User code Libs Eq Imp Snf Nat

@@I@@R ��	 ���

Evaluator

6?

Nucleus

4 / 1



Nucleus

▶ simple: 1800 lines of pure OCaml

▶ implements exactly the rules of our TT

▶ computes judgements Γ ⊢ e : T

5 / 1



Andromeda Meta Language (AML)

▶ ML-style language
▶ special data type judgement :

▶ smart constructors via Nucleus
▶ pattern matching on syntax

▶ algebraic effects & handlers à la Eff

6 / 1



Questions asked by the Evaluator

▶ equality:
Γ ⊢ (λx:T . x) e ≡ e : T

▶ type shape analysis:
T ↪→

∏
(x:A)B

▶ coercions:
“a has type Field but expected a Ring”

7 / 1



Soundness

The values of type judgement are the derivable
judgements in type theory with equality reflection.

We implemented some safe algorithms:

▶ equal.m31 (600 lines)

▶ hints.m31 (400 lines)

8 / 1



Related work

▶ rewriting in TT: ‘sprinkles’, Dedukti,
CoqMT, ...

▶ “extensional” type theory: Nuprl

▶ ML based ITPs: LCF / HOL (light) family

9 / 1



Plans

▶ improve efficiency

▶ replace Type : Type with universes

▶ axiomatise Homotopy Type System

▶ users!

10 / 1


