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Overview
Earlier:
▶ Operational Semantics of λref,conc: e, (h, e)⇝ (h, e ′), and (h, E)→ (h′, E ′)
▶ Basic Logic of Resources : l ↪→ v , P ∗ Q, P −∗ Q, Γ | P ⊢ Q
▶ Basic Separation Logic : {P} e {v .Q} : Prop, isList l xs, ADTs, foldr
▶ Later (▷) and Persistent (2) Modalities.
▶ Concurrency Intro, Invariants and Ghost State
▶ CAS, Spin Locks, Concurrent Counter Modules.
▶ Monotone Resource Algebra
▶ Case studies: Ticket Lock, Array Based Queuing Lock, and Stack with Helping
▶ More details of constructions, e.g., weakest preconditions, etc.
▶ Logical Relations for safety & type abstraction in Iris
▶ Randomization, Frand

µ,ref operational semantics, contextual & logical refinement

Today:
▶ Case study: Security of ElGamal public key encryption
▶ Lazy vs eager sampling
▶ Asynchronous coupling rules
▶ Ongoing & future work10:18 2/21



The ElGamal public key scheme

keygen ≜ λ . let sk := rand(n) in

let pk := g sk in

(sk , pk)

dec ≜ λ sk (B,X ). X · B−sk

enc ≜ λ pk msg . let b := rand(n) in

let B := gb in

let X := msg · pkb in
(B,X )

Parameterized by a group G encoding messages, ciphertexts, and keys.

Write G = (1, · ,−−1) for a finite cyclic group of order |G |, generated by g , and let
n = |G | − 1.
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Public key security, I

keygen ≜ λ .

let sk := rand(n) in

let pk := g sk in

(sk, pk)

enc ≜ λ pk msg .

let b := rand(n) in

letB := gb in

letX := msg · pkb in

(B,X )

PK real ≜

let (sk, pk) := keygen() in

let count := ref 0 in

let query = λ msg .

if ! count ̸= 0 then

None

else

count ← 1;

let (B,X ) = enc pk msg in

Some (B,X )

in (pk, query)

PK rand ≜

let (sk, pk) := keygen() in

let count := ref 0 in

let query = λ msg .

if ! count ̸= 0 then

None

else

count ← 1;

let b := rand(n) in

let x := rand(n) in

let (B,X ) := (gb, g x) in

Some (B,X )

in (pk, query)
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The Decisional Diffie-Hellman assumption

Assumption: DHreal and DHrand are hard to distinguish.

DHreal ≜ let a := rand(n) in

let b := rand(n) in

(ga, gb, gab)

DHrand ≜ let a := rand(n) in

let b := rand(n) in

let c := rand(n) in

(ga, gb, g c)

Proof idea: exhibit C s.t. we can prove

⊢ PK real ≃ctx C[DHreal ] : τPK (1)

⊢ PK rand ≃ctx C[DHrand ] : τPK (2)

Then PK real and PK rand should also be hard to distinguish by our assumption.
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Public key security, II

PK real ≜

let (sk, pk) := keygen() in

let count := ref 0 in

let query = λ msg .

if ! count ̸= 0 then

None

else

count ← 1;

let (B,X ) = enc pk msg in

Some (B,X )

in (pk, query)

PK rand ≜

let (sk, pk) := keygen() in

let count := ref 0 in

let query = λ msg .

if ! count ̸= 0 then

None

else

count ← 1;

let b := rand(n) in

let x := rand(n) in

let (B,X ) := (gb, g x) in

Some (B,X )

in (pk, query)

(a) The security games.

C[−] ≜
let (pk,B,C) := − in

let count := ref 0 in

let query = λ msg .

if ! count ̸= 0 then

None

else

count ← 1;

letX = msg · C in

Some (B,X )

in (pk, query)

(b) The DH reduction context.
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ElGamal security reduction, I

PK real ≃ctx

let sk := rand(n) in

let pk := g sk in

let count := ref 0 in

let query = λ msg .

if ! count ̸= 0 then

None

else

count ← 1;

let b = rand(n) in

let B = gb in

let X = msg · pkb in

Some (B,X )

in (pk, query)

C[DHreal ]

let (pk,B,C) =

let a := rand(n) in

let b := rand(n) in

(ga, gb, gab) in

let count := ref 0 in

let query = λ msg .

if ! count ̸= 0 then

None

else

count ← 1;

letX := msg · C in

Some (B,X )

in (pk, query)
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Isolating the problem: lazy/eager sampling

eager ≜ let b := flip() in λ . b

lazy ≜ let r := ref(None) in

λ . match ! r with

Some(b)⇒ b

| None ⇒ let b := flip() in

r ← Some(b);

b

end

We expect

⊢ lazy ≃ctx eager : unit→ bool
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eager ≜ let b := flip() in λ . b

lazy ≜ let r := ref(None) in

λ . match ! r with

Some(b)⇒ b

| None ⇒ let b := flip() in

r ← Some(b);

b

end

We expect

⊢ lazy ≃ctx eager : unit→ bool

Recall: we plug lazy , eager into a well-
typed context evaluating to a boolean.

Not the same distribution on values, but
same observations!
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High-level idea: labelled sampling and presampling tapes

...

K1[e],ι 7→ x1 x2 . . . xk

K1[e],ι 7→ x1 x2 . . . xk n

K ′
1[rand(ι,N)], ι 7→ n y1 . . .

K ′
1[n], ι 7→ y1 . . .

(after k samples from ι)

...

K2[ rand(N)], σ′

E [f (n)], σ′

...

An asynchronous coupling established through the rule rel-couple-tape-l.
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Syntax

Modify Frand
µ,ref as follows

...

Val v ::= . . . | ι ∈ Label

Exp e ::= . . . | rand(e1, e2) | tape e
ECtx E ::= . . . | rand(e,K ) | rand(K , v) | tape(K )

Heap h ∈ Loc
fin−⇀ Val

TapeMap = Label
fin−⇀ Tape

State σ ∈ Heap×TapeMap

Tape t ∈ {(N, n⃗) | N ∈ N ∧ n⃗ ∈ N∗≤N}
Config ρ ::= (σ, e)

Type τ ::= . . . | tape
10:53 10/21



Operational semantics

σ, tape(N) →1 σ[ι 7→ (N, ε)], ι if ι = fresh(σ)

σ, rand(N, ι) →1/(N+1) σ, n if σ(ι) = (N, ε) and n ≤ N

σ, rand(N, ι) →1 σ[ι 7→ (N, n⃗) ], n if σ(ι) = (N, n · n⃗)

No primitives in the language add values to the tapes!

Presampling steps are ghost operations appearing only in the relational logic.
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A resource algebra for tapes

Recall
Tape = {(N, n⃗) | N ∈ N ∧ n⃗ ∈ N∗≤N}

and
TapeMap = Label

fin−⇀ Tape

We can define a RA like for heaps.

Tape ownership:

ι ↪→ (N, n⃗)

Likewise for the right-hand side “spec” program:

ι ↪→s (N, n⃗)
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Reasoning with tapes: one-sided rules

rel-alloc-tape-l
∀ι. ι ↪→ (N, ε) −∗ ∆ ⊨ E [ι] ≾ e : τ

∆ ⊨ E [ tape(N)] ≾ e : τ

rel-alloc-tape-r
∀ι. ι ↪→s (N, ε) −∗ ∆ ⊨ e ≾ E [ι] : τ

∆ ⊨ e ≾ E [ tape(N)] : τ

rel-rand-tape-l
ι ↪→ (N, n · n⃗) ι ↪→ (N, n⃗) −∗ ∆ ⊨E E [n] ≾ e2 : τ

∆ ⊨E E [ rand(N, ι)] ≾ e2 : τ

rel-rand-tape-r
ι ↪→s (N, n · n⃗) ι ↪→s (N, n⃗) −∗ ∆ ⊨E e1 ≾ E [n] : τ

∆ ⊨E e1 ≾ E [ rand(N, ι)] : τ

rel-rand-tape-empty-l
ι ↪→ (N, ε) ∀n ≤ N. ι ↪→ (N, ε) −∗ ∆ ⊨E E [n] ≾ e2 : τ

∆ ⊨E E [ rand(N, ι)] ≾ e2 : τ

rel-rand-tape-empty-r
ι ↪→s (N, ε) ∀n ≤ N. ι ↪→s (N, ε) −∗ ∆ ⊨E e1 ≾ E [n] : τ

∆ ⊨E e1 ≾ E [ rand(N, ι)] : τ
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Reasoning with tapes: asynchronous couplings

rel-couple-tape-l
f bijection ι ↪→ (N, n⃗) ∀n ≤ N. ι ↪→ (N, n⃗ · n) −∗ ∆ ⊨E e1 ≾ E [f (n)] : τ

∆ ⊨E e1 ≾ E [ rand(N)] : τ

rel-couple-tape-r
f bijection ι ↪→s (N, n⃗) ∀n ≤ N. ι ↪→s (N, n⃗ · f (n)) −∗ ∆ ⊨E E [n] ≾ e2 : τ

∆ ⊨E E [ rand(N)] ≾ e2 : τ

rel-couple-tapes
ι ↪→ (N, n⃗) ι′ ↪→s (N, n⃗′)

f bijection
∀n ≤ N. ι ↪→ (N, n⃗ · n) ∗ ι′ ↪→s (N, n⃗′ · f (n)) −∗ ∆ ⊨E e1 ≾ e2 : τ

∆ ⊨E e1 ≾ e2 : τ

rel-rand-erase-r
ι ↪→s (N, ε) ∀n ≤ N.∆ ⊨E E [n] ≾ E ′[n] : τ

∆ ⊨E E [ rand(N)] ≾ E ′[ rand(N, ι)] : τ

rel-rand-erase-l
ι ↪→ (N, ε) ∀n ≤ N.∆ ⊨E E [n] ≾ E ′[n] : τ

∆ ⊨E E [ rand(N, ι)] ≾ E ′[ rand(N)] : τ
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Mechanization demo
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ElGamal security reduction, II

PK real ≃ctx

let sk := rand(n) in

let pk := g sk in

let count := ref 0 in

let query = λ msg .

if ! count ̸= 0 then

None

else

count ← 1;

let b = rand(n) in

let B = gb in

let X = msg · pkb in

Some (B,X )

in (pk, query)

PK tape
real

let β := tape(n) in

let sk := rand(n) in

let pk := g sk in

let count := ref 0 in

let query = λ msg .

if ! count ̸= 0 then

None

else

count ← 1;

let b = rand(n, β) in

let B = gb in

let C = pkb in

let X = msg · C in

Some (B,X )

in (pk, query)
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C[DHreal ]

let (pk,B,C) =

let a := rand(n) in

let b := rand(n) in

(ga, gb, gab) in

let count := ref 0 in

let query = λ msg .

if ! count ̸= 0 then

None

else

count ← 1;

letX := msg · C in

Some (B,X )

in (pk, query)
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Current work: reasoning about approximate correctness

▶ program logic:
up to ε

γ ⊢ {P} e {Q}

▶ adequacy:

∀σ,P ⇒
∑

{v∈Val|¬Q(v)}

exec(σ, e)(v) < ε

▶ examples:
▶ cryptographic keys are hard to guess
▶ hash collisions are unlikely
▶ rejection samplers with arbitrary precision
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Current work: reasoning about approximate refinement

▶ program logic:
up to ε

γ ⊢ {P} e1 < e2 {Q}

▶ adequacy:
If P holds, then for all σ1, σ2, there exists an ε-approximate left-partial Q-coupling
between exec(σ1, e1) and exec(σ2, e2).

▶ Examples
▶ from crypto: PRP/PRF switching lemma
▶ rejection samplers for non-uniform distributions?
▶ differential privacy?
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Current work: reasoning about termination-preserving refinement

▶ program logic:
⊢M {True} e {λ .True}

▶ adequacy:

∀σ,
∑
a∈A

exec(M)(a) ≤
∑
v∈Val

exec(σ, e)(v)

▶ examples
▶ lazily sampled, infinite precision real numbers
▶ treap data structures
▶ iterated Markov chains
▶ task schedulers?
▶ implementations of stochastic processes?
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Future work

▶ Reasoning about expected running time
▶ program logic?

fuel c
γ ⊢ {P} e {Q}

▶ adequacy?
If P holds, then for all σ, the expected runtime of (σ, e) is c .

▶ Examples
▶ algorithms: quicksort?
▶ data structures: treaps? skip lists?
▶ rejection samplers?

▶ Reasoning about distributed randomized system
▶ dining philosophers, consensus, multi-party computation?
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