Iris: Higher-Order Concurrent Separation Logic

Lecture 22: Asynchronous reasoning about randomized programs

Philipp G. Haselwarter

Aarhus University, Denmark

December 7, 2023

Overview

10:18

Earlier:

- ▶ Operational Semantics of $\lambda_{\mathrm{ref,conc}}$: e, $(h, e) \rightsquigarrow (h, e')$, and $(h, \mathcal{E}) \rightarrow (h', \mathcal{E}')$
- ► Basic Logic of Resources : $I \hookrightarrow v, P * Q, P \twoheadrightarrow Q, \Gamma | P \vdash Q$
- ▶ Basic Separation Logic : $\{P\} e \{v.Q\}$: Prop, isList *I xs*, ADTs, foldr
- Later (\triangleright) and Persistent (\Box) Modalities.
- Concurrency Intro, Invariants and Ghost State
- CAS, Spin Locks, Concurrent Counter Modules.
- Monotone Resource Algebra
- Case studies: Ticket Lock, Array Based Queuing Lock, and Stack with Helping
- More details of constructions, *e.g.*, weakest preconditions, *etc.*
- Logical Relations for safety & type abstraction in Iris
- Randomization, $\mathbf{F}_{\mu,\text{ref}}^{\text{rand}}$ operational semantics, contextual & logical refinement Today:
 - Case study: Security of ElGamal public key encryption
 - Lazy vs eager sampling
 - Asynchronous coupling rules
- Ongoing & future work

The ElGamal public key scheme

$$keygen \triangleq \lambda_{-} . let sk := rand(n) in$$
$$let pk := g^{sk} in$$
$$(sk, pk)$$
$$dec \triangleq \lambda sk (B, X). X \cdot B^{-sk}$$

$$enc \triangleq \lambda \ pk \ msg. \ let \ b := rand(n) \ in$$

 $let \ B := g^b \ in$
 $let \ X := msg \cdot pk^b \ in$
 (B, X)

The ElGamal public key scheme

$$\begin{aligned} & keygen \triangleq \lambda_{-} . \ \mathsf{let} \ sk := \mathsf{rand}(n) \ \mathsf{in} & enc \triangleq \lambda \ pk \ msg. \ \mathsf{let} \ b := \mathsf{rand}(n) \ \mathsf{in} \\ & \mathsf{let} \ pk := g^{sk} \ \mathsf{in} & \mathsf{let} \ B := g^b \ \mathsf{in} \\ & (sk, pk) & \mathsf{let} \ X := msg \cdot pk^b \ \mathsf{in} \\ & dec \triangleq \lambda \ sk \ (B, X). \ X \cdot B^{-sk} & (B, X) \end{aligned}$$

Parameterized by a group G encoding messages, ciphertexts, and keys.

Write $G = (1, \cdot, -1)$ for a finite cyclic group of order |G|, generated by g, and let n = |G| - 1.

Public key security, I

 $keygen \triangleq \lambda_{-}.$ let sk := rand(n) in $let pk := g^{sk} in$ (sk, pk) $enc \triangleq \lambda \ pk \ msg.$ let b := rand(n) in

> let $B := g^b$ in let $X := msg \cdot pk^b$ in (B, X)

PK_{real} ≜ let(sk, pk) := keygen() in let count := ref 0 in let query = λ msg. if $! count \neq 0$ then None else *count* \leftarrow 1;

let $(B, X) = enc \ pk \ msg$ in Some (B, X)in (pk, query)

 $PK_{rand} \triangleq$ let(sk, pk) := keygen() in let count := ref 0 in let query = λ msg. if $! count \neq 0$ then None else *count* \leftarrow 1: let b := rand(n) in let x := rand(n) in let $(B, X) := (g^b, g^x)$ in Some (B, X)in (pk, query)

The Decisional Diffie-Hellman assumption

Assumption: DH_{real} and DH_{rand} are hard to distinguish.

Proof idea: exhibit \mathcal{C} s.t. we can prove

$$\vdash PK_{real} \simeq_{ctx} C[DH_{real}] : \tau_{PK}$$

$$\vdash PK_{rand} \simeq_{ctx} C[DH_{rand}] : \tau_{PK}$$
(1)
(2)

Then PK_{real} and PK_{rand} should also be hard to distinguish by our assumption.

Public key security, II

$PK_{real} \triangleq$	$PK_{rand} \triangleq$
let(sk,pk):=keygen()in	let(sk,pk) := keygen() in
let count := ref 0 in	let <i>count</i> := ref 0 in
let query $=\lambda$ msg.	let query = λ msg.
if $! count \neq 0$ then	if $! count \neq 0$ then
None	None
else	else
$count \leftarrow 1;$	$\textit{count} \leftarrow 1;$
	let $b := rand(n)$ in
	let $x := rand(n)$ in
let $(B,X)=rac{enc}{enc}rac{bk}{pk}rac{msg}{msg}$ in	let $(B,X) := (g^b,g^x)$ in
Some (B, X)	Some (B, X)
in (pk, query)	in (pk, query)
(a) The security games.	

Public key security, II

PK_{real} ≜ let(sk, pk) := keygen() in let count := ref 0 inlet query = λ msg. if $! count \neq 0$ then None else *count* \leftarrow 1; let $(B, X) = enc \ pk \ msg$ in Some (B, X)in (pk, query) (a) The security games.

 $PK_{rand} \triangleq$ let(sk, pk) := kevgen() in let count := ref 0 in let query = λ msg. if $! count \neq 0$ then None else *count* \leftarrow 1: let b := rand(n) in let x := rand(n) in let $(B, X) := (g^b, g^x)$ in Some (B, X)in (pk, query)

 $\mathcal{C}[-] \triangleq$ let(pk, B, C) := -inlet count := ref 0 in let query = λ msg. if $! count \neq 0$ then None else *count* \leftarrow 1: let $X = msg \cdot C$ in Some (B, X)in (pk, query) (b) The DH reduction context.

ElGamal security reduction, I

PK_{real} $C[DH_{real}]$ \simeq_{ctx} let (pk, B, C) =let sk := rand(n) in let a := rand(n) in let $pk := g^{sk}$ in let b := rand(n) in $(g^a, \frac{g^b}{g^b}, \frac{g^{ab}}{g^{ab}})$ in let count := ref 0 in let count := ref 0 in let query = λ msg. let query = λ msg. if ! count \neq 0 then if $! count \neq 0$ then None None else else *count* \leftarrow 1; *count* \leftarrow 1; let b = rand(n) in let $B = g^b$ in let $X = msg \cdot \frac{pk^b}{pk^b}$ in let $X := msg \cdot C$ in Some (B, X)Some (B, X)in (pk, query) in (pk, query)

$$eager \triangleq \mathsf{let} \ b := \mathsf{flip}() \ \mathsf{in} \ \lambda_{-}. \ b$$

```
lazy \triangleq let r := ref(None) in
\lambda_{-}. match ! r with
Some(b) \Rightarrow b
| None \Rightarrow let b := flip() in
r \leftarrow Some(b);
b
end
```

eager \triangleq let b := flip() in λ_{-} . b

 $lazy \triangleq let r := ref(None) in$

 λ_{-} . match ! r with Some(b) \Rightarrow b | None \Rightarrow let b := flip() in $r \leftarrow$ Some(b); b end We expect

 $\vdash \mathit{lazy} \simeq_{\mathsf{ctx}} \mathit{eager}: \mathsf{unit} \to \mathsf{bool}$

Recall: we plug *lazy*, *eager* into a well-typed context evaluating to a boolean.

Not the same distribution on values, but same observations!

 $eager \triangleq \mathsf{let} \ b := \mathsf{flip}() \ \mathsf{in} \ \lambda_{-}. \ b$

 $lazy \triangleq let r := ref(None) in$

 λ_{-} . match ! r with

$$Some(b) \Rightarrow b$$

| None \Rightarrow let $b := flip()$ in
 $r \leftarrow Some(b);$
 b

end

We expect

 $\vdash \mathit{lazy} \simeq_{\mathsf{ctx}} \mathit{eager}: \mathsf{unit} \to \mathsf{bool}$

 $\begin{array}{c} \text{REL-COUPLE-RANDS} \\ f \text{ bijection} \\ \\ \hline \forall n \leq N. \ \Delta \vDash_{\mathcal{E}} E[n] \precsim E'[f(n)] : \tau \\ \hline \Delta \vDash_{\mathcal{E}} E[\text{rand}(N)] \precsim E'[\text{rand}(N)] : \tau \end{array}$

 $eager \triangleq \mathsf{let} \ b := \mathsf{flip}() \ \mathsf{in} \ \lambda_{-}. \ b$

 $lazy \triangleq let r := ref(None) in$

 λ_{-} . match ! r with Some(b) \Rightarrow b | None \Rightarrow let b := flip() in $r \leftarrow Some(b);$ b

end

We expect

 $\vdash \mathit{lazy} \simeq_{\mathsf{ctx}} \mathit{eager} : \mathsf{unit} \to \mathsf{bool}$

 $\begin{array}{c} {}_{\text{REL-COUPLE-RANDS}} \\ f \text{ bijection} \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \Delta \vDash_{\mathcal{E}} E[n] \precsim E'[f(n)] : \tau \\ \hline \\ \hline \\ \\ \Delta \vDash_{\mathcal{E}} E[\text{rand}(N)] \precsim E'[\text{rand}(N)] : \tau \end{array}$

Does not apply.

 $eager \triangleq \mathsf{let} \ b := \mathsf{flip}() \ \mathsf{in} \ \lambda_{-}. \ b$

 $lazy \triangleq let r := ref(None) in$

 λ_{-} . match ! r with Some(b) \Rightarrow b | None \Rightarrow let b := flip() in $r \leftarrow Some(b);$ b end We expect

 $\vdash \mathit{lazy} \simeq_{\mathsf{ctx}} \mathit{eager}: \mathsf{unit} \to \mathsf{bool}$

 $\begin{array}{c} \text{REL-COUPLE-RANDS} \\ f \text{ bijection} \\ \\ \hline \forall n \leq N. \ \Delta \vDash_{\mathcal{E}} E[n] \precsim E'[f(n)] : \tau \\ \hline \Delta \vDash_{\mathcal{E}} E[\operatorname{rand}(N)] \precsim E'[\operatorname{rand}(N)] : \tau \end{array}$

Does not apply. 😿

High-level idea: labelled sampling and presampling tapes

$$\begin{array}{c}
\downarrow\\ K_{1}[e], \iota \mapsto \boxed{x_{1} \ x_{2} \cdots x_{k}} \\
K_{1}[e], \iota \mapsto \boxed{x_{1} \ x_{2} \cdots x_{k}} \\
K_{1}[e], \iota \mapsto \boxed{x_{1} \ x_{2} \cdots x_{k}} \\
\downarrow\\ K_{1}[e], \iota \mapsto \boxed{x_{1} \ x_{2} \cdots x_{k}} \\
\downarrow\\ (after \ k \ samples \ from \ \iota) \\
\downarrow\\ K_{1}'[rand(\iota, N)], \iota \mapsto \boxed{n \ y_{1} \cdots} \\
\downarrow\\ K_{1}'[n], \iota \mapsto \boxed{y_{1} \cdots}
\end{array}$$

An asynchronous coupling established through the rule ${\scriptstyle\rm REL-COUPLE-TAPE-L}.$

Syntax

Modify $\mathbf{F}^{\mathrm{rand}}_{\mu,\mathrm{ref}}$ as follows

Val
$$v$$
 $::=$ \dots $\iota \in Label$ Exp e $::=$ \dots $rand(e_1, e_2)$ $tape e$ ECtx E $::=$ \dots $rand(e, K)$ $rand(K, v)$ $tape(K)$

Type au ::= ... | tape

÷

Operational semantics

$$\begin{array}{lll} \sigma, \mathsf{tape}(N) & \to^1 & \sigma[\iota \mapsto (N, \varepsilon)], \ \iota & \text{if } \iota = \mathsf{fresh}(\sigma) \\ \sigma, \mathsf{rand}(N, \iota) & \to^{1/(N+1)} & \sigma, \ n & \text{if } \sigma(\iota) = (N, \varepsilon) \text{ and } n \le N \\ \sigma, \mathsf{rand}(N, \iota) & \to^1 & \sigma[\iota \mapsto (N, \vec{n})], \ n & \text{if } \sigma(\iota) = (N, n \cdot \vec{n}) \end{array}$$

Operational semantics

$$\begin{array}{lll} \sigma, \mathsf{tape}(N) & \to^1 & \sigma[\iota \mapsto (N, \varepsilon)], \ \iota & \text{ if } \iota = \mathsf{fresh}(\sigma) \\ \sigma, \mathsf{rand}(N, \iota) & \to^{1/(N+1)} & \sigma, \ n & \text{ if } \sigma(\iota) = (N, \varepsilon) \text{ and } n \leq N \\ \sigma, \mathsf{rand}(N, \iota) & \to^1 & \sigma[\iota \mapsto (N, \vec{n})], \ n & \text{ if } \sigma(\iota) = (N, n \cdot \vec{n}) \end{array}$$

No primitives in the language add values to the tapes!

Presampling steps are ghost operations appearing only in the relational logic.

A resource algebra for tapes

Recall

$$Tape = \{ (N, \vec{n}) \mid N \in \mathbb{N} \land \vec{n} \in \mathbb{N}^*_{\leq N} \}$$

and

$$TapeMap = Label \stackrel{\text{fin}}{\longrightarrow} Tape$$

We can define a RA like for heaps.

A resource algebra for tapes

Recall

$$Tape = \{ (N, \vec{n}) \mid N \in \mathbb{N} \land \vec{n} \in \mathbb{N}^*_{\leq N} \}$$

and

$$\mathit{TapeMap} = \mathit{Label} \stackrel{\mathrm{fin}}{\longrightarrow} \mathit{Tape}$$

We can define a RA like for heaps. Tape ownership:

 $\iota \hookrightarrow (N, \vec{n})$

A resource algebra for tapes

Recall

$$Tape = \{ (N, \vec{n}) \mid N \in \mathbb{N} \land \vec{n} \in \mathbb{N}^*_{\leq N} \}$$

and

$$\mathit{TapeMap} = \mathit{Label} \stackrel{\mathrm{fin}}{\longrightarrow} \mathit{Tape}$$

We can define a RA like for heaps. Tape ownership:

 $\iota \hookrightarrow (N, \vec{n})$

Likewise for the right-hand side "spec" program:

 $\iota \hookrightarrow_{\mathsf{s}} (N, \vec{n})$

Reasoning with tapes: one-sided rules

BEL-ALLOC-TAPE-L REL-ALLOC-TAPE-R $\forall \iota. \iota \hookrightarrow (\mathsf{N}, \varepsilon) \twoheadrightarrow \Delta \vDash \mathsf{E}[\iota] \preceq \mathsf{e} : \tau \qquad \forall \iota. \iota \hookrightarrow_{\mathsf{s}} (\mathsf{N}, \varepsilon) \twoheadrightarrow \Delta \vDash \mathsf{e} \preceq \mathsf{E}[\iota] : \tau$ $\Delta \models E[tape(N)] \preceq e : \tau$ $\Delta \models e \preceq E[\text{tape}(N)] : \tau$ **BEL-BAND-TAPE-L** $\iota \hookrightarrow (N, n \cdot \vec{n}) \qquad \iota \hookrightarrow (N, \vec{n}) \twoheadrightarrow \Delta \vDash_{\mathcal{E}} E[n] \preceq e_2 : \tau$ $\Delta \models_{\mathcal{E}} E[\operatorname{rand}(N,\iota)] \preceq e_2 : \tau$ REL-RAND-TAPE-R $\iota \hookrightarrow_{\mathsf{s}} (N, n \cdot \vec{n}) \qquad \iota \hookrightarrow_{\mathsf{s}} (N, \vec{n}) \twoheadrightarrow \Delta \vDash_{\mathcal{E}} \mathbf{e}_1 \preceq \mathbf{E}[n] : \tau$ $\Delta \models_{\mathcal{E}} e_1 \preceq E[\operatorname{rand}(N, \iota)] : \tau$ REL-BAND-TAPE-EMPTY-L $\iota \hookrightarrow (N, \varepsilon) \qquad \forall n < N, \iota \hookrightarrow (N, \varepsilon) \twoheadrightarrow \Delta \models_{\mathcal{E}} E[n] \preceq e_{2} : \tau$ $\Delta \models_{\mathcal{E}} E[rand(N, \iota)] \preceq e_2 : \tau$ REL-BAND-TAPE-EMPTY-R $\iota \hookrightarrow_{\varsigma} (N, \varepsilon) \quad \forall n < N. \iota \hookrightarrow_{\varsigma} (N, \varepsilon) \twoheadrightarrow \Delta \vDash_{\varepsilon} e_1 \preceq E[n] : \tau$ $\Delta \models_{\mathcal{E}} e_1 \preceq E[\operatorname{rand}(N, \iota)] : \tau$

Reasoning with tapes: asynchronous couplings

$$\frac{f \text{ bijection } \iota \hookrightarrow (N, \vec{n}) \qquad \forall n \leq N. \, \iota \hookrightarrow (N, \vec{n} \cdot n) \twoheadrightarrow \Delta \vDash_{\mathcal{E}} e_1 \precsim E[f(n)] : \tau}{\Delta \vDash_{\mathcal{E}} e_1 \precsim E[rand(N)] : \tau}$$

 $\frac{f \text{ bijection } \iota \hookrightarrow_{s} (N, \vec{n}) \quad \forall n \leq N. \ \iota \hookrightarrow_{s} (N, \vec{n} \cdot f(n)) \twoheadrightarrow \Delta \vDash_{\mathcal{E}} E[n] \precsim e_{2} : \tau}{\Delta \vDash_{\mathcal{E}} E[\text{ rand}(N)] \precsim e_{2} : \tau}$

$$\frac{\text{REL-COUPLE-TAPES}}{\iota \hookrightarrow (N, \vec{n})} \quad \iota' \hookrightarrow_{s} (N, \vec{n}')$$

f bijection
$$\frac{\forall n \le N. \iota \hookrightarrow (N, \vec{n} \cdot n) * \iota' \hookrightarrow_{s} (N, \vec{n}' \cdot f(n)) \twoheadrightarrow \Delta \vDash_{\mathcal{E}} e_{1} \preceq e_{2} : \tau}{\Delta \vDash_{\mathcal{E}} e_{1} \preceq e_{2} : \tau}$$

$$\frac{\iota \hookrightarrow_{\mathsf{s}} (N,\varepsilon) \quad \forall n \leq N. \ \Delta \vDash_{\mathcal{E}} E[n] \precsim E'[n] : \tau}{\Delta \vDash_{\mathcal{E}} E[\operatorname{rand}(N)] \precsim E'[\operatorname{rand}(N,\iota)] : \tau} \qquad \frac{\operatorname{REL-RAND-ERASE-L}}{\Delta \vDash_{\mathcal{E}} E[\operatorname{rand}(N,\iota)] \precsim E'[\operatorname{rand}(N,\iota)] : \tau}$$

Mechanization demo

ElGamal security reduction, II

PK_{real} \simeq_{ctx} let sk := rand(n) in let $pk := g^{sk}$ in let count := ref 0 in let query = λ msg. if $! count \neq 0$ then None else *count* \leftarrow 1: let $b = \frac{rand(n)}{rand(n)}$ in let $B = g^b$ in let $X = msg \cdot pk^b$ in Some (B, X)in (pk, query)

PK_{real}^{tape}

Let $\beta := tape(n)$ in Let sk := rand(n) in Let $pk := g^{sk}$ in

let count := ref 0 in let query = λ msg. if $! count \neq 0$ then None else *count* \leftarrow 1: let $b = rand(n, \beta)$ in let $B = g^b$ in let $C = pk^b$ in let $X = msg \cdot C$ in Some (B, X)in (pk, query)

ElGamal security reduction, II

PK^{tape} $C[DH_{real}]$ \simeq_{ctx} let (pk, B, C) =let $\beta := tape(n)$ in let a := rand(n) in let sk := rand(n) in let $pk := g^{sk}$ in let count := ref 0 in let query = λ msg. if $! count \neq 0$ then None None else else *count* \leftarrow 1; let $b = rand(n, \beta)$ in let $B = g^b$ in let $C = pk^b$ in let $X = msg \cdot C$ in Some (B, X)in (pk, query) in (pk, query)

let b := rand(n) in $(g^a, \frac{g^b, g^{ab}}{g^b})$ in let count := ref 0 in let query = λ msg. if $! count \neq 0$ then *count* \leftarrow 1:

Current work: reasoning about approximate correctness

program logic:

$$up_to[\varepsilon]^{\gamma} \vdash \{P\} \ e \ \{Q\}$$

Current work: reasoning about approximate correctness

$$up_to \ \varepsilon \ ^{\gamma} \vdash \{P\} \ e \ \{Q\}$$

program logic:

$$\forall \sigma, P \Rightarrow \sum_{\{v \in Val \mid \neg Q(v)\}} \operatorname{exec}(\sigma, e)(v) < \varepsilon$$

Current work: reasoning about approximate correctness

$$up_to arepsilon^{\gamma} \vdash \{P\} \ e \ \{Q\}$$

program logic:

$$orall \sigma, P \Rightarrow \sum_{\{v \in Val \mid \neg Q(v)\}} \operatorname{exec}(\sigma, e)(v) < \varepsilon$$

examples:

- cryptographic keys are hard to guess
- hash collisions are unlikely
- rejection samplers with arbitrary precision

Current work: reasoning about approximate refinement

program logic:

$$\left| up_to \left| arepsilon
ight|^{\gamma} dash \left\{ P
ight\} e_1 < e_2 \left\{ Q
ight\}$$

Current work: reasoning about approximate refinement

 $up_to \varepsilon_1^{\gamma} \vdash \{P\} e_1 < e_2 \{Q\}$

► adequacy:

program logic:

If P holds, then for all σ_1, σ_2 , there exists an ε -approximate left-partial Q-coupling between $\exp(\sigma_1, e_1)$ and $\exp(\sigma_2, e_2)$.

Current work: reasoning about approximate refinement

 $up_to \varepsilon_1^{\gamma} \vdash \{P\} e_1 < e_2 \{Q\}$

adequacy:

program logic:

If P holds, then for all σ_1, σ_2 , there exists an ε -approximate left-partial Q-coupling between $\exp(\sigma_1, e_1)$ and $\exp(\sigma_2, e_2)$.

Examples

- from crypto: PRP/PRF switching lemma
- rejection samplers for non-uniform distributions?
- differential privacy?

Current work: reasoning about termination-preserving refinement

program logic:

 $\vdash_{\mathcal{M}} \{\mathsf{True}\} e \{\lambda_{-}, \mathsf{True}\}$

Current work: reasoning about termination-preserving refinement

 $\vdash_{\mathcal{M}} \{\mathsf{True}\} e \{\lambda_{-}, \mathsf{True}\}$

$$orall \sigma, \qquad \sum_{a \in \mathcal{A}} \operatorname{exec}(\mathcal{M})(a) \ \leq \ \sum_{v \in Val} \operatorname{exec}(\sigma, e)(v)$$

program logic:

► adequacy:

Current work: reasoning about termination-preserving refinement

 $\vdash_{\mathcal{M}} \{\mathsf{True}\} e \{\lambda_{-}, \mathsf{True}\}$

program logic:

$$orall \sigma, \qquad \sum_{a \in \mathcal{A}} \operatorname{exec}(\mathcal{M})(a) \ \leq \ \sum_{v \in Val} \operatorname{exec}(\sigma, e)(v)$$

examples

- lazily sampled, infinite precision real numbers
- treap data structures
- iterated Markov chains
- task schedulers?
- implementations of stochastic processes?

Reasoning about expected running time

program logic?

 $[\texttt{fuel } c]^{\gamma} \vdash \{P\} \ e \ \{Q\}$

Reasoning about expected running time

program logic?

```
[\texttt{fuel } c]^{\gamma} \vdash \{P\} \ e \ \{Q\}
```

adequacy?

If P holds, then for all σ , the expected runtime of (σ, e) is c.

Reasoning about expected running time

program logic?

```
[\underline{\texttt{fuel } c}]^{\gamma} \vdash \{P\} \ e \ \{Q\}
```

adequacy?

If P holds, then for all σ , the expected runtime of (σ, e) is c.

- Examples
 - algorithms: quicksort?
 - data structures: treaps? skip lists?
 - rejection samplers?

Reasoning about expected running time

program logic?

```
[\texttt{fuel } c]^{\gamma} \vdash \{P\} \ e \ \{Q\}
```

adequacy?

If P holds, then for all σ , the expected runtime of (σ, e) is c.

- Examples
 - algorithms: quicksort?
 - data structures: treaps? skip lists?
 - rejection samplers?

Reasoning about distributed randomized system

dining philosophers, consensus, multi-party computation?

Joint work with

Simon Gregersen

Joseph Tassarotti

Lars Birkedal

Hei Li

Markus de Medeiros