10:15

Iris: Higher-Order Concurrent Separation Logic

Lecture 22: Asynchronous reasoning about randomized programs

Philipp G. Haselwarter

Aarhus University, Denmark

December 7, 2023

1/21

Overview

10:18

Earlier:
» Operational Semantics of A\t conc: €, (h,€) ~ (h,€'), and (h,&) — (K, &)
Basic Logic of Resources: [— v, P*xQ, P Q, T |PFQ
Basic Separation Logic : {P}e{v.Q} : Prop, isList / xs, ADTs, foldr
Later (>) and Persistent (O0) Modalities.
Concurrency Intro, Invariants and Ghost State
CAS, Spin Locks, Concurrent Counter Modules.
Monotone Resource Algebra
Case studies: Ticket Lock, Array Based Queuing Lock, and Stack with Helping
More details of constructions, e.g., weakest preconditions, etc.
Logical Relations for safety & type abstraction in Iris
» Randomization, F;’"’r‘gf operational semantics, contextual & logical refinement
Today:
» Case study: Security of ElIGamal public key encryption
» Lazy vs eager sampling
» Asynchronous coupling rules
» Onocoing & future work 2/21

VVYyVYVVVVYYVYY

The ElGamal public key scheme

keygen = \ _. let sk := rand(n) in enc = \ pk msg.let b := rand(n) in
let pk := g*<in let B:=g®in
(sk, pk) let X := msg - pk®in
dec £)\ sk (B,X). X-B~* (B, X)

10:23 3.(1/2)/21

The ElGamal public key scheme

keygen = \ _. let sk := rand(n) in enc = \ pk msg.let b := rand(n) in
let pk := g*<in let B:=g®in
(sk, pk) let X := msg - pk®in
dec £)\ sk (B,X). X-B~* (B, X)

Parameterized by a group G encoding messages, ciphertexts, and keys.

Write G = (1, -, ——1) for a finite cyclic group of order |G|, generated by g, and let
n=|G| -1

3.(2/2)/21

Public key security,

keygen & X _.
let sk := rand(n)in
let pk := g*in
(sk, pk)

enc £)\ pk msg.
let b := rand(n) in
let B := gb in
let X := msg - pkb in
(B, X)

10:28

PK rea &
let (sk, pk) := keygen() in
let count :=ref Oin
let query = \ msg.
if 1 count # 0 then
None
else

count < 1,

let (B, X) = enc pk msg in
Some (B, X)
in (pk, query)

PK rand =
let (sk, pk) := keygen() in
let count :=ref Oin
let query =)\ msg.
if 1 count # Othen
None
else
count + 1;
let b := rand(n) in
let x := rand(n) in
let (B, X) := (g°,g")in
Some (B, X)
in (pk, query)

4/21

The Decisional Diffie-Hellman assumption

Assumption: DH,e, and DH,,,4 are hard to distinguish.

DH,ear = let a := rand(n) in DHyang 2 let a := rand(n) in
let b := rand(n) in let b := rand(n) in
(ga7gbagab) let ¢ := rand(n)in

(%8" &)

Proof idea: exhibit C s.t. we can prove

F 'DKreaI etx C[DHreal] - TPK (1)
F 'DKrand etx C[DHrand] S TPK (2)

Then PK ey and PK,,,q should also be hard to distinguish by our assumption.

10:32

5/21

Public key security, I

PK reas & PK rand =
let (sk, pk) := keygen() in let (sk, pk) := keygen() in
let count :=ref Oin let count ;= ref Oin
let query = X\ msg. let query = A msg.
if 1 count # 0then if ! count # 0then
None None
else else
count < 1, count <+ 1;

let b := rand(n)in

let x := rand(n) in

let (B, X) = enc pk msg in let (B, X) := (g°, &%) in
Some (B, X) Some (B, X)
in (pk, query) in (pk, query)

(a) The security games.

10:34 6.(1/2)/21

Public key security, I

PK reat & PK ang & cl-1=
let (sk, pk) := keygen() in let (sk, pk) := keygen() in let (pk, B, C) := —in
let count :=ref Oin let count ;= ref Oin let count :=ref Oin
let query = \ msg. let query = \ msg. let query = \ msg.
if 1 count # 0 then if 1 count # 0then if 1 count # 0then
None None None
else else else
count < 1, count <+ 1; count < 1;

let b := rand(n)in

let x := rand(n) in

let (B, X) = enc pk msg in let (B, X) := (g° &) in let X = msg - Cin
Some (B, X) Some (B, X) Some (B, X)
in (pk, query) in (pk, query) in (pk, query)
(a) The security games. (b) The DH reduction context.

10:34 6.(2/2)/21

ElGamal security reduction, |

PK real Metx C[DHreal]
let (pk, B, C) =
let sk := rand(n) in let a := rand(n) in
let pk := g% in let b := rand(n) in
(g°.8% &) in
let count := ref 0in let count := ref 0in
let query = \ msg. let query = \ msg.
if I count # 0then if I count # 0then
None None
else else
count + 1; count + 1;
let b = rand(n) in
let B =g’ in
let X = msg - pkb in let X :=msg - Cin
Some (B, X) Some (B, X)
in (pk, query) in (pk, query)

10:38 7/21

Isolating the problem: lazy/eager sampling

eager = let b := flip()in A_. b

lazy = let r := ref(None) in

A_. match ! r with

Some(b) = b
| None = let b:=flip()in
r <— Some(b);
b
end

10:43 8.(1/5)/21

Isolating the problem: lazy/eager sampling

eager = let b := flip()in A_. b We expect

F lazy ~x eager : unit — bool
lazy = let r := ref(None) in -
Recall: we plug lazy, eager into a well-

A_. match ! rwith
typed context evaluating to a boolean.

Some(b) = b
| None = let b:=flip()in Not the same distribution on values, but
r < Some(b); same observations!
b
end

10:43 8.(2/5)/21

Isolating the problem: lazy/eager sampling

eager = let b := flip()in A_. b We expect

F lazy ~.x eager : unit — bool
lazy = let r := ref(None) in Y etk €38

A_. match ! r with

Some(b) = b REL-COUPLE-RANDS

|None = let b:=flip()in f bijection
r < Some(b); Vn < N.AFg E[n] 3 E'[f(n)] : 7
b A Fg E[rand(N)] 3 E'[rand(N)] : 7

end

10:43 8.(3/5)/21

Isolating the problem: lazy/eager sampling

eager = let b := flip()in A_. b We expect

F lazy ~ eager : unit — bool
lazy & letr = ref(None) in Y ctx €38

A_. match ! r with

Some(b) = b REL-COUPLE-RANDS
| None = letb:=flip()in f bijection /
r < Some(b); Vn < N.AFg E[n] 3 E'[f(n)] : 7
b A Fg E[rand(N)] 3 E'[rand(N)] : 7

end
Does not apply.

10:43 8.(4/5)/21

Isolating the problem: lazy/eager sampling

eager = let b := flip()in A_. b We expect

F lazy ~. eager : unit — bool
lazy £ let r := ref(None) in Y Scix €ag

A_. match ! r with

Some(b) = b REL-COUPLE-RANDS
| None = let b :=flip()in f bijection
r < Some(b); Vn< N.AF¢ E[n] 3 E'[f(n)] : 7
b A Fg E[rand(N)] 3 E'[rand(N)] : 7

end
Does not apply. &

10:43 8.(5/5)/21

High-level idea: labelled sampling and presampling tapes

l l

Kile],e =[x - [x«] Ka[rand(N)], o’
L |
Kulel, =[x [l - [x] n] E[f(n)], 0’
i

(after k samples from)

~

K{[rand(e, N)],¢c = n 1] -]
|
Ki[n], ¢ —

An asynchronous coupling established through the rule REL-COUPLE-TAPE-L.

10:48 9/21

Syntax

10:53

Modify F;rf,rr]gf as follows

Val
Exp
ECtx

Heap
TapeMap
State
Tape
Config

Type

<

m m

... | v € Label
... | rand(e1,) | tapee
... | rand(e, K) | rand(K,v) | tape(K)

Loc T vy

Label T Tape

Heap x TapeMap

{(N;A) | N e NA e NLy}
(0,€)

... | tape

10/21

Operational semantics

o, tape(N) —1 ole— (N,e)], ¢ if © = fresh(o)
o,rand(N,) YD) 6o if o(t) =(N,e) and n < N
o,rand(N,) —1 ole— (N,n)], n ifo(t)=(N,n-n)

10:58 11.(1/2)/21

Operational semantics

o, tape(N) —1 ole— (N,e)], ¢ if © = fresh(o)
o,rand(N,) YD) 6o if o(t) =(N,e) and n < N
o,rand(N,) —1 ole— (N,n)], n ifo(t)=(N,n-n)

No primitives in the language add values to the tapes!

Presampling steps are ghost operations appearing only in the relational logic.

10:58 11.(2/2)/21

A resource algebra for tapes
Recall
Tape = {(N,n) | N e NA [T €Ny}
and

TapeMap = Label fin, Tape

We can define a RA like for heaps.

11:15 12.(1/3)/21

A resource algebra for tapes

Recall
Tape = {(N,n) | N e NA [T €Ny}

and .
TapeMap = Label = Tape

We can define a RA like for heaps. Tape ownership:

vt (N,)

11:15 12.(2/3)/21

A resource algebra for tapes

Recall
Tape = {(N,n) | N e NA [T €Ny}

and .
TapeMap = Label = Tape

We can define a RA like for heaps. Tape ownership:
vt (N,)
Likewise for the right-hand side “spec” program:

L —s (N,)

11:15 12.(3/3)/21

Reasoning with tapes: one-sided rules

REL-ALLOC-TAPE-L REL-ALLOC-TAPE-R
Vi.e— (Nye) « AEFE[l]Ze: T Vioe s (Nye) * AF e ZE[]: T
AFE E[tape(N)] S e: 7 AF e X E[tape(N)] : 7

REL-RAND-TAPE-L
L= (N, n-n) t—= (N,7) «AFeg E[n|Ze:T

AEg E[rand(N,))] S e : 7

REL-RAND-TAPE-R
t—s (N, n-n) t s (N,A) « AFg er I E[n]:7

AFg er 3 E[rand(N,)] : 7

REL-RAND-TAPE-EMPTY-L
L= (N,¢) Vn<N.o— (Nye) x AFc E[n| S e : 7

AFEg E[rand(N,)] S e 7

REL-RAND-TAPE-EMPTY-R
L —s (N, ¢€) Vn < N.o—s(N,e) «AkFeg et ZE[n]:T

AFg e 3 E[rand(N,)] : 7

13/21

Reasoning with tapes: asynchronous couplings

REL-COUPLE-TAPE-L
f bijection L= (N,) VYn< N.o— (N,@-n) =« AkEg e ZE[f(n)]:7
AEg e 2 E[rand(N)] : 7

REL-COUPLE-TAPE-R
f bijection L= (N, 1) VYn< N.o—g (N,d-f(n)) «AFg E[n] Se:7
AFEg E[rand(N)] 2 e = T

REL-COUPLE-TAPES
v (N,m) =g (N,)

f bijection
Vn< N.o— (N,a-n)*t —¢ (N, -f(n) «AFceg Se:T

AFcei Ze:T

REL-RAND-ERASE-R REL-RAND-ERASE-L
t=(Nye) Vn< N.AFEgE[nZE]n]:7

t=s(N,e) Vn< N.AEgE[nZE'n]:7
A Fg E[rand(N)] 3 E'[rand(N,)] : 7 A Fg E[rand(N,)] 2 E'[rand(N)] : 7
14/21

Mechanization demo

11:35 15/21

ElGamal security reduction, Il

11:40

PK real etx

let sk := rand(n) in
let pk := g% in

let count :=ref 0in
let query = \ msg.
if 1 count # 0then

None
else
count < 1;
let b = rand(n) in
let B = gb in

let X = msg - pkb in
Some (B, X)
in (pk, query)

PK tape

real

let B := tape(n) in
let sk := rand(n) in
let pk := g% in

let count :=ref 0in
let query = A msg.
if | count # 0 then

None
else
count <+ 1;
let b = rand(n, 8) in
let B= gb in
let C = pk?in
let X = msg - Cin
Some (B, X)

in (pk, query)

16.(1/2)/21

ElGamal security reduction, Il

PK:Zfle Hetx C[DHreaI]
let B := tape(n) in let (pk, B, C) =
let sk := rand(n) in let a := rand(n) in
let pk := g% in let b := rand(n) in
(&°.8"%&%)in
let count :=ref 0in let count :=ref 0in
let query = X\ msg. let query = \ msg.
if 1 count # 0then if 1 count # 0then
None None
else else
count < 1; count <+ 1;
let b = rand(n, B8) in
let B = gb in
let C = pk®in
let X = msg - Cin let X := msg - Cin
Some (B, X) Some (B, X)
in (pk, query) in (pk, query)

11:40 16.(2/2)/21

Current work: reasoning about approximate correctness

» program logic:

11:44 17.(1/3)/21

Current work: reasoning about approximate correctness

» program logic:

» adequacy:
Vo, P = Z exec(o,e)(v) <e
{veVal|-Q(v)}

11:44 17.(2/3)/21

Current work: reasoning about approximate correctness

» program logic:

» adequacy:
Vo, P = Z exec(o,e)(v) <e
{veVal|-Q(v)}

P> examples:

» cryptographic keys are hard to guess
> hash collisions are unlikely
P rejection samplers with arbitrary precision

11:44 17.(3/3)/21

Current work: reasoning about approximate refinement

» program logic:

11:48 18.(1/3)/21

Current work: reasoning about approximate refinement

> program logic:

» adequacy:
If P holds, then for all g1, 02, there exists an e-approximate left-partial Q-coupling
between exec(o1, 1) and exec(o7, &).

11:48 18.(2/3)/21

Current work: reasoning about approximate refinement

> program logic:

» adequacy:

If P holds, then for all g1, 02, there exists an e-approximate left-partial Q-coupling
between exec(o1, 1) and exec(o7, &).

> Examples

» from crypto: PRP/PRF switching lemma

» rejection samplers for non-uniform distributions?
» differential privacy?

11:48 18.(3/3)/21

Current work: reasoning about termination-preserving refinement

» program logic:
Fat {True} e {_. True}

11:52 19.(1/3)/21

Current work: reasoning about termination-preserving refinement

» program logic:
Fa {True} e {A_. True}

» adequacy:

Vo, Zexec(/\/l)(a) < Z exec(o, e)(v)

acA veE Val

11:52 19.(2/3)/21

Current work: reasoning about termination-preserving refinement

» program logic:
Fa {True} e {A_. True}

» adequacy:

Vo, Zexec(/\/l)(a) < Z exec(o, e)(v)

acA veE Val

> examples

» lazily sampled, infinite precision real numbers
P treap data structures

» iterated Markov chains

» task schedulers?

» implementations of stochastic processes?

11:52

19.(3/3)/21

Future work

P Reasoning about expected running time
» program logic?

P ————
|

fuel ¢! - {P}e{Q}

11:56 20.(1/4)/21

Future work

P Reasoning about expected running time
» program logic?

P ————
|

fuel ¢! - {P}e{Q}

» adequacy?
If P holds, then for all o, the expected runtime of (o, ¢€) is c.

11:56 20.(2/4)/21

Future work

P Reasoning about expected running time
» program logic?

B
|
I -

» adequacy?
If P holds, then for all o, the expected runtime of (o, ¢€) is c.

> Examples

» algorithms: quicksort?
> data structures: treaps? skip lists?
P> rejection samplers?

11:56 20.(3/4)/21

Future work

P Reasoning about expected running time
» program logic?

B
|
I -

» adequacy?
If P holds, then for all o, the expected runtime of (o, ¢€) is c.

> Examples

» algorithms: quicksort?
> data structures: treaps? skip lists?
P> rejection samplers?

» Reasoning about distributed randomized system
» dining philosophers, consensus, multi-party computation?

11:56 20.(4/4)/21

Joint work with

4

Alejandro Aguirre Simon Gregersen Joseph Tassarotti

LW o 1 st

Lars Birkedal Hei Li Markus de Medeiros

12:00 21/21

